Randić index and the diameter of a graph
نویسندگان
چکیده
منابع مشابه
Randić index and the diameter of a graph
The Randić index R(G) of a nontrivial connected graph G is defined as the sum of the weights (d(u)d(v))− 1 2 over all edges e = uv ofG. We prove that R(G) ≥ d(G)/2, where d(G) is the diameter of G. This immediately implies that R(G) ≥ r(G)/2, which is the closest result to the well-known Grafiti conjecture R(G) ≥ r(G) − 1 of Fajtlowicz [4], where r(G) is the radius of G. Asymptotically, our res...
متن کاملThe Randić index and the diameter of graphs
The Randić index R(G) of a graph G is defined as the sum of 1 √dudv over all edges uv of G, where du and dv are the degrees of vertices u and v, respectively. Let D(G) be the diameter of Gwhen G is connected. Aouchiche et al. (2007) [1] conjectured that among all connected graphs G on n vertices the path Pn achieves the minimum values for both R(G)/D(G) and R(G) − D(G). We prove this conjecture...
متن کاملThe Steiner diameter of a graph
The Steiner distance of a graph, introduced by Chartrand, Oellermann, Tian and Zou in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ and $Ssubseteq V(G)$, the Steiner distance $d(S)$ among the vertices of $S$ is the minimum size among all connected subgraphs whose vertex sets contain $S$. Let $...
متن کاملA proof for a conjecture on the Randić index of graphs with diameter
The Randić index R(G) of a graph G is defined by R(G) = ∑ uv 1 √ d(u)d(v) , where d(u) is the degree of a vertex u in G and the summation extends over all edges uv of G. Aouchiche et al. proposed a conjecture on the relationship between the Randić index and the diameter: for any connected graph on n ≥ 3 vertices with the Randić index R(G) and the diameter D(G), R(G) − D(G) ≥ √ 2 − n+1 2 and R(G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2011
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2010.12.002